Eukaryotic nirK genes encoding copper-containing nitrite reductase: originating from the protomitochondrion?
نویسندگان
چکیده
Although denitrification or nitrate respiration has been found among a few eukaryotes, its phylogenetic relationship with the bacterial system remains unclear because orthologous genes involved in the bacterial denitrification system were not identified in these eukaryotes. In this study, we isolated a gene from the denitrifying fungus Fusarium oxysporum that is homologous to the bacterial nirK gene responsible for encoding copper-containing nitrite reductase (NirK). Characterization of the gene and its recombinant protein showed that the fungal nirK gene is the first eukaryotic ortholog of the bacterial counterpart involved in denitrification. Additionally, recent genome analyses have revealed the occurrence of nirK homologs in many fungi and protozoa, although the denitrifying activity of these eukaryotes has never been examined. These eukaryotic homolog genes, together with the fungal nirK gene of F. oxysporum, are grouped in the same branch of the phylogenetic tree as the nirK genes of bacteria, archaea, and eukaryotes, implying that eukaryotic nirK and its homologs evolved from a single ancestor (possibly the protomitochondrion). These results show that the fungal denitrifying system has the same origin as its bacterial counterpart.
منابع مشابه
A eukaryotic copper-containing nitrite reductase derived from a NirK homolog gene of Aspergillus oryzae.
We cloned a bacterial copper-containing nitrite reductase (NirK) homolog gene of Aspergillus oryzae (AonirK). Alignment showed that amino acid residues crucial for copper binding are conserved in the deduced sequence of the fungal protein. The recombinant protein exhibited distinct nitrite reductase activity, and its absorption and EPR spectra showed the presence of type 1 and type 2 copper ato...
متن کاملThe possible involvement of copper-containing nitrite reductase (NirK) and flavohemoglobin in denitrification by the fungus Cylindrocarpon tonkinense.
The occurrence of denitrification and nitrate respiration among eukaryotes has been established during the last few decades. However, denitrification-related eukaryotic genes have been isolated from only a few fungi, and eukaryotic denitrification (or nitrate respiration) is still inadequately understood. In this study, we identified genes that were up-regulated under denitrifying conditions in...
متن کاملDissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria.
The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of beta-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional ...
متن کاملCharacterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3.
Nitrite reductase catalyzes the reduction of nitrite to nitric oxide, the first step in denitrification to produce a gaseous product. We have cloned the gene nirK, which encodes the copper-type nitrite reductase from a denitrifying variant of Rhodobacter sphaeroides, strain 2.4.3. The deduced open reading frame has significant identity with other copper-type nitrite reductases. Analysis of the ...
متن کاملFunction of the Rhizobium etli CFN42 nirK gene in nitrite metabolism.
Rhizobium etli CFN42 is not capable of growing anaerobically with nitrate but it grows with nitrite as a terminal electron acceptor. This bacterium contains the nirK gene encoding the copper-containing Nir (nitrite reductase), which is located on the cryptic plasmid pCFN42f. Mutational analysis has demonstrated that a nirK deficient mutant was not capable of growing under nitrite-respiring cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 75 9 شماره
صفحات -
تاریخ انتشار 2009